NOM:		
Prénom	:	

Test Thermodynamique (40 min)

Calculatrice interdite. Aucun document. Les exercices sont indépendants.
Combien de sources de chaleur sont nécessaires pour produire du travail ?
Qu'est ce qui relie °C et K ?
Définir le volume massique et donnez son unité.
La relation PV =nRT est-elle toujours valable ? Explicitez les termes de l'équation (définition et unité)
Pourquoi avoir besoin d'un second principe ? Explicitez-le

NOM: Prénom:
Un gaz parfait (masse molaire M=35 g.mol ⁻¹ et γ = 1,4) est enfermé dans un cylindre surmonté d'un piston qui peut coulisser sans frottement. A l'état initial, ce gaz à la température T_1 = 27°C et à la pression P_1 occupe un volume V_1 = 1 litre. On comprime le gaz jusqu'à la pression P_2 =4 P_1 . Sachant que cette évolution est adiabatique réversible, sans application numérique, écrivez la relation permettant calculer le volume V_2 et la température finale T_2 en fonction des données. On donne: - La relation des gaz parfaits : PV = nRT avec n le nombre de mole et la constante des
 gaz parfaits: R = 8,314 J.mol⁻¹.K⁻¹ Pour une évolution isentropique (adiabatique réversible) d'un gaz parfait entre 1 et 2, on peut écrire :
$\frac{T1}{T2} = (\frac{V1}{V2})^{1-\gamma} = (\frac{P1}{P2})^{\frac{\gamma-1}{\gamma}}$
Quelle est la différence entre température et chaleur ?

NOM: Prénom:
L'expression Q= $mc_p\Delta T$ est-elle toujours applicable ? Justifiez. Quelle est l'unité de chaque terme
A main levé, sur un diagramme $\log P = f(h)$ tracer les isothermes, isobares, isenthalpes, isentropes, isochores