Bienvenue aux Mines Paristech
Bienvenue à MINES ParisTech
Newsletter International
Website
Théorie & Pratique
Vous êtes

rechercher
un événement

choisissez une date

Partager

Le 3 décembre 2021

Soutenance de thèse de Hugo LAUNAY

Modèles réduits par apprentissage automatique pour l'étude de la nocivité de défauts

Résumé de la thèse en français

La tenue mécanique des structures est directement liée à la présence de défauts. Ces derniers jouent le rôle de concentrateur de contrainte, ce qui réduit considérablement la charge limite que les composants peuvent supporter ou encore leur durée de vie en fatigue. Néanmoins, d'un point de vue économique, il n'est pas envisageable de rebuter toute pièce défectueuse. Des critères permettant de statuer sur leur criticité ont donc été mis en place. Cependant ces derniers sont très conservatifs, par conséquent certains composants fonctionnels se trouvent mis au rebut. Pour pallier cette difficulté, des méthodes d'évaluation plus précises fondées sur le calcul numérique, telles que la méthode des éléments finis, sont utlisées. Toutefois ces dernières sont coûteuses en temps et en puissance de calcul. L'essor des techniques de science des données permet de tirer profit des informations collectées afin d'accélérer les simulations numériques. Ce travail de thèse vise à développer des méthodes de réduction de modèle par apprentissage automatique pour l'analyse de la nocivité de défauts en mécanique des matériaux. Par ailleurs, les méthodes d'apprentissage automatique permettent d'éviter le paramétrage des objets à modéliser. C'est une propriété particulièrement intéressante pour l'analyse des défauts, qui sont ici représentés à l'aide d'images (2D ou 3D) et associés à un champ mécanique calculé par la méthode des éléments finis ou FFT. Dans ce travail, des défauts locaux dans des matériaux métalliques ductiles sont considérés. L'objectif est de constituer des modèles numériques débouchant sur une décision rapide quant à la nocivité d'un défaut local à l'aide d'outils basés sur l'apprentissage automatique. Les approches proposées dans ce mémoire s'appuient en particulier sur des techniques de classification automatique des formes, reposant sur des distances morphologiques et mécaniques, et sur la représentation géométrique et mécanique des formes dans l'espace latent d'autoencodeurs multimodaux. Des méthodes d'estimation d'erreur sont également abordées afin d'évaluer la véracité des résultats trouvés.

Résumé de la thèse en anglais

The mechanical behaviour of structures is directly related to the presence of defects or not. They act as stress concentrators which considerably reduce the limit load that the components can support or their fatigue lifetime. However, from an economic point of view, it is not feasible to reject every component containing a defect. Criteria have therefore been developed to assess their criticality. However, they are very conservative, as a consequence some functional components are rejected. To avoid this difficulty, more accurate evaluation methods based on numerical calculation, such as the finite element method, are used. However, these numerical techniques are costly in terms of computation time and power. The explosive growth of data science allows the use of previously collected data to speed up numerical simulations. The aim of this thesis is to develop methods for model order reduction by machine learning for the analysis of the harmfulness of defects in mechanics of materials. The simulation-driven machine learning approach is very attractive when models are available. Moreover, machine learning methods are appropriate to avoid the parametrization of the objects to be modelled. This is a particularly interesting property for defect analysis. In this work, defects are represented using images (2D or 3D) as well as their associated mechanical response, predicted by a Fourier-based or finite element method. In this thesis we will focus on local defects in ductile metallic materials. The objective of the thesis is to build numerical models that allow a quick decision on the harmfulness of a local defect using a machine learning-based tool. Our approaches involve, in particular, automatic classification of shapes using both morphological and mechanically relevant distances as well as the representation of geometrical and mechanical shapes on the latent spaces of multimodal autoencoders. Error estimation methods are also discussed in order to evaluate the veracity of the results found.

Titre anglais : Reduced models via machine learning to analyse the criticality of defects
Date de soutenance : vendredi 3 décembre 2021 à 9h00
Adresse de soutenance : Mines Paristech, 60 Bd Saint-Michel, 75272 Paris - L109
Directeur de thèse : David RYCKELYNCK
Codirecteur : François WILLOT

> plus d'informations sur le site dédié Soutenance de thèse de Hugo LAUNAY - MINES ParisTech

actualité

Agir contre les violences sexistes et sexuelles

Formation Agir contre les violences sexistes et sexuelles Les violences sexistes et sexuelles, le…
> En savoir +

Classement « Employabilité » du<i>Times Higher Education</i>

Formation Classement « Employabilité » duTimes Higher Education Dans l'édition 2021 du Global Employability…
> En savoir +

Chloé-Agathe Azencott ou l’intelligence au service des maths, de la santé et des femmes

Formation Chloé-Agathe Azencott ou l’intelligence au… Chloé-Agathe Azencott, enseignante-chercheuse à…
> En savoir +

Prix du meilleur poster pour Joëlle Najib à la Conférence PRES'21

Formation Prix du meilleur poster pour Joëlle Najib à la Conférence… Félicitations à Joëlle Najib, prix du…
> En savoir +

Martin Brossard 1<sup>er</sup> Prix de thèse en Robotique

Formation Martin Brossard 1er Prix de thèse en Robotique Martin Brossard a reçu le Prix de thèse du GdR…
> En savoir +

Prix Maurice Allais de Science économique 2021

Formation Prix Maurice Allais de Science économique 2021 Christine Allais et Bertrand Munier remettent le Prix Maurice…
> En savoir +

+ Toutes les actualités

webTV

Lecture

Conférence éthique et intelligence artificielle : Elise Berlinski

Lecture

Certificat exécutif : digital native, 3 questions à...

Lecture

Carlos Adrian Correa Florez, MINES ParisTech PhD, PERSEE center

Lecture

Certificat exécutif : digital native, 3 questions à...

Lecture

Lancement de la Chaire industrielle ANR TOPAZE

+ TOUS

Plan du site
MINES
ParisTech

60, Boulevard Saint-Michel
75272 PARIS Cedex 06
Tél. : +33 1 40 51 90 00

Implantations
Mentions légales | efil.fr | ©2012 MINES ParisTech | +33 1 40 51 90 00 |