Bienvenue aux Mines Paristech
Bienvenue à MINES ParisTech
Newsletter International
Website
Théorie & Pratique
Vous êtes

rechercher
un événement

choisissez une date

Partager

Le 22 septembre 2020

Soutenance de thèse de Thibault PLAYS

Influence d'un champ magnétique sur la séparabilité d'un mélange de molécules paramagnétiques et diamagnétiques

Soutenance de thèse de Thibault PLAYS

Résumé de la thèse en français

L'objectif de ma thèse est de déterminer l'impact que pourrait avoir un champ magnétique sur un procédé de séparation d'un mélange constitué de molécules paramagnétiques et diamagnétiques. Plus précisément, le système étudié est l'air. Les molécules d'oxygène, azote et argon ont des propriétés physico-chimiques très similaires, rendant leur séparation très couteuse en énergie et en investissement. Cependant, les propriétés magnétiques des trois molécules diffèrent : l'oxygène est paramagnétique tandis que l'azote et l'argon sont diamagnétiques. Le paramagnétisme de l'oxygène a plusieurs conséquences sur son comportement, élévation de l'énergie interne en présence d'un champ magnétique, et force attractive vers les zones de fort champ magnétique. L'objectif était donc d'explorer différentes façons d'appliquer un champ magnétique sur notre système dans l'espoir que ces comportements aient un impact sur la séparabilité. La littérature nous a permis de dégager trois axes principaux d'étude. Le premier axe est l'étude thermodynamique d'un équilibre liquide vapeur en présence d'un champ magnétique. Le deuxième concerne l'impacte du champ magnétique sur des écoulements gazeux d'air. Et enfin le dernier se rapporte aux membranes magnétiques constituées d'une membrane dopée avec des particules magnétiques. Ces trois axes ont alors été étudiés. Une base théorique et de nombreuses expériences ont été menées afin d'observer un quelconque phénomène. La stratégie consistait à multiplier les approches avec une multitude de prototype afin de repérer la solution la plus prometteuse pour un procédé de séparation. Concernant les membranes magnétiques, nous n'avions ni le savoir faire pour les réaliser, ni le temps pour nous en procurer. En revanche, nous nous sommes inspirés de ces expériences pour évaluer le potentiel de nanoparticules magnétiques dans un procédé de séparation. L'interaction entre les nanoparticules et l'oxygène a été évaluée, ainsi qu'une campagne de solubilité de l'oxygène dans un ferrofluide (solvant contenant des nanoparticules magnétiques). Il a été démontré que l'impact d'un champ magnétique sur un équilibre thermodynamique n'était pas suffisamment significatif pour l'employer dans un procédé de séparation. La piste d'un procédé cinétique est plus prometteuse. Les expériences avec écoulement semblent être impactées par un champ magnétique, mais cet impact reste très modéré. Ce travail a exposé toute la complexité pour modéliser les phénomènes et trouver les géométries et conditions requises pour obtenir des résultats intéressant dans le cas de procédés avec écoulement. En revanche, la piste des nanoparticules est très prometteuse. Même si mes études n'ont montré aucun impact du champ magnétique sur la solubilité dans un ferrofluide ou l'interaction directe entre les nanoparticules et l'oxygène, la littérature fait état de résultats significatifs en employant des systèmes membranaires.

Résumé de la thèse en anglais

The purpose of my thesis is to evaluate the impact of a magnetic field on the separation process of a mixture of paramagnetic and diamagnetic molecules. More precisely, the system of interest is the air. Oxygen, nitrogen and argon have quite similar chemicophysical properties, so the energy and the economical cost to separate those molecules are pretty high. However, the magnetic properties of those three molecules are different: the oxygen is paramagnetic whereas the nitrogen and the argon are diamagnetic. The internal energy of oxygen increases when a magnetic field is applied to the molecule, and a force attracts the oxygen towards the area with the higher magnetic field. The objective was to explore different ways to apply a magnetic field to our system in order to observe an impact on the possibility to separate the molecules. Literature reveals three major axes of study. The first one is the thermodynamic study of liquid-vapor equilibrium under a magnetic field. The second one is about the impact of a magnetic field on the hydrodynamic flow of gaseous air. And the le last one, concerns the magnetic membranes composed of a membrane doped with magnetic particles. Those three axes have been studied. A theoretical analysis and several experiments have been conducted to observe an impact of the magnetic field. The strategy was to explore many approaches with a multitude of prototype in order to find the most valuable solution for a separation process. For the magnetic membranes, we had neither the knowledge to synthesis one nor the time to acquire one. However, we tried to reproduce the concept to evaluate the potential of magnetic nanoparticles in a separation process. The interaction between nanoparticles and oxygen has been evaluated. A campaign of measure on the solubility of oxygen in a ferrofluide (solvent containing magnetic nanoparticles) has been conducted. We prove that the impact of the magnetic field on the liquid/vapor equilibrium is too weak to use it in an industrial separation process. The lead of a kinetic process is more encouraging. The experiments with hydrodynamic flows seem to be impact by a magnetic field, even if this impact is pretty moderate. In this work, the complexity of the simulation of the phenomenon in order to establish the best geometry and conditions for the process was described. However, the lead of nanoparticles is promising. Even if my study did not reveal any influence of the magnetic field on the solubility in a ferrofluid nor on the interaction between oxygen and the nanoparticles, literature shows impressive results for systems using magnetic membranes.

Titre anglais : Impact of a magnetic field on the separability of a mixture of paramagnetic and diamagnetic molecules
Date de soutenance : Tuesday 22 September 2020 à 14h30
Adresse de soutenance : 60 Boulevard Saint-Michel 75272 Paris - L109
Directeurs de thèse : Paolo STRINGARI, Marco CAMPESTRINI

> plus d'informations sur le site dédié Soutenance de thèse de Thibault PLAYS - MINES ParisTech

actualité

Félicitations à Stefano Cassano

Formation Félicitations à Stefano Cassano La 55 e conférence internationale sur…
> En savoir +

La lutte pour une agriculture libre : bricoler et partager pour s'émanciper

Formation La lutte pour une agriculture libre : bricoler… Fabriquer ses propres machines, réparer son tracteur, échanger…
> En savoir +

Formation doctorale :

Formation Formation doctorale : "IDEAL", la nouvelle offre… « Pour la première fois, on se positionne au niveau du doctorat…
> En savoir +

Lutte contre la pandémie de coronavirus

Formation Lutte contre la pandémie de coronavirus Vous trouverez sur cette page les dernières consignes en…
> En savoir +

Prix Pierre Londe 2020

Formation Prix Pierre Londe 2020 Le prix « Pierre Londe » 2020 de la meilleure thèse en mécanique des roches en France a…
> En savoir +

+ Toutes les actualités

webTV

Lecture

Conférence éthique et intelligence artificielle : Elise Berlinski

Lecture

Certificat exécutif : digital native, 3 questions à...

Lecture

Carlos Adrian Correa Florez, MINES ParisTech PhD, PERSEE center

Lecture

Certificat exécutif : digital native, 3 questions à...

Lecture

Lancement de la Chaire industrielle ANR TOPAZE

+ Toutes les vidéos

Plan du site
MINES
ParisTech

60, Boulevard Saint-Michel
75272 PARIS Cedex 06
Tél. : +33 1 40 51 90 00

Implantations
Mentions légales | efil.fr | ©2012 MINES ParisTech | +33 1 40 51 90 00 |