Bienvenue aux Mines Paristech
Bienvenue à MINES ParisTech
Newsletter International
Website
Théorie & Pratique
Vous êtes

webTV

Lecture

Conférence éthique et intelligence artificielle : Elise Berlinski

Lecture

Certificat exécutif : digital native, 3 questions à...

Lecture

Carlos Adrian Correa Florez, MINES ParisTech PhD, PERSEE center

Lecture

Certificat exécutif : digital native, 3 questions à...

Lecture

Lancement de la Chaire industrielle ANR TOPAZE

+ Toutes les vidéos

Partager

[POURVU] Simulation de la localisation plastique par dynamique des dislocations et plasticité crystalline

[POURVU] Simulation de la localisation plastique par dynamique des dislocations et plasticité crystalline

Simulation of plastic strain localization by Discrete Dislocation Dynamics and crystal plasticity

Proposition de thèse

Spécialité

Mécanique

Ecole doctorale

Ingénierie des Systèmes, Matériaux, Mécanique, Énergétique

Directeur de thèse

PROUDHON Henry

Unité de recherche

Centre des Matériaux

ContactHenry PROUDHON
Date de validité

01/10/2020

Site Webhttp://www.mat.mines-paristech.fr/Accueil/Propositions-de-theses/
Mots-clés

Dynamique des dislocations, Plasticité cristalline, Localisation de la déformation plastique, Simulation HPC

Dislocation dynamics, crystal plasticity, plastic strain localization, HPC simulation

Résumé

Understanding the deformation processes leading to the failure of polycrystalline structural materials is one of the key challenges in materials science. Significant progress has been achieved over the past decades, thanks to both cutting-edge experimental characterization techniques and computational methods [1-3]. Still, the localization of plasticity in slip bands and the propagation of plasticity through a polycrystalline aggregate are not fully understood. The investigation of such phenomena is the goal of the ANR project 3DPolyPlast starting in march 2020.

Within the 3DiPolyPlast, this open position will particularly focus on objectives 3 and 4. The electron- and synchrotron-based characterizations carried out in the 2 other Ph. D. projects will be compared to the simulation results performed on digital copies (“clones”) of the measured 3D grain microstructures. In the proposed multi-scale simulation approach, Discrete Dislocations (DD) simulations will be used in order to better model the individual and collective behaviour of dislocations at the mesoscale. Stress concentration at the origin of strain localization in slip bands is naturally reproduced by DD simulations. Modeling the boundaries in such simulations is non-trivial and will be addressed in the framework of the Discrete-Continuous Model (DCM) which couples crystal plasticity finite element calculations carried out on the full polycrystalline aggregate with DD simulations inside a single grain. This method is based on continuum elasticity theory, which provides the description of the elastic strain field induced by dislocations, their mutual interaction and their interaction with an external stress field [4]. The strong advantage of this method is that stress concentration at the origin of strain localization in slip bands [5] can be accurately simulated by DD calculations.

Understanding the deformation processes leading to the failure of polycrystalline structural materials is one of the key challenges in materials science. Significant progress has been achieved over the past decades, thanks to both cutting-edge experimental characterization techniques and computational methods [1-3]. Still, the localization of plasticity in slip bands and the propagation of plasticity through a polycrystalline aggregate are not fully understood. The investigation of such phenomena is the goal of the ANR project 3DPolyPlast starting in march 2020.

Within the 3DiPolyPlast, this open position will particularly focus on objectives 3 and 4. The electron- and synchrotron-based characterizations carried out in the 2 other Ph. D. projects will be compared to the simulation results performed on digital copies (“clones”) of the measured 3D grain microstructures. In the proposed multi-scale simulation approach, Discrete Dislocations (DD) simulations will be used in order to better model the individual and collective behaviour of dislocations at the mesoscale. Stress concentration at the origin of strain localization in slip bands is naturally reproduced by DD simulations. Modeling the boundaries in such simulations is non-trivial and will be addressed in the framework of the Discrete-Continuous Model (DCM) which couples crystal plasticity finite element calculations carried out on the full polycrystalline aggregate with DD simulations inside a single grain. This method is based on continuum elasticity theory, which provides the description of the elastic strain field induced by dislocations, their mutual interaction and their interaction with an external stress field [4]. The strong advantage of this method is that stress concentration at the origin of strain localization in slip bands [5] can be accurately simulated by DD calculations.

Contexte

Plastic localization in polycrystalline structural materials is key to understand material strenght and failure. New synchrotron based experimental methods coupled to image based simualtion of the material response provide new opportunities to investigate these physical processes. This is the context of the ANR project 3DPolyPlast starting in march 2020. The project is a joint collaboration between INSA Lyon, ONERA, P' institute and MINES ParisTech.

Encadrement

Directeur de thèse - PROUDHON Henry - Centre des Matériaux
Co-Encadrant - DEVINCRE Benoît - ONERA

Profil candidat

Ingénieur et/ou Master recherche - Bon niveau de culture générale et scientifique. Bon niveau de pratique du français et de l'anglais (niveau B2 ou équivalent minimum).
Excellentes capacités d'analyse, de synthèse, d'innovation et de communication. Qualités d'adaptabilité et de créativité. Capacités pédagogiques. Motivation pour l'activité de recherche. Projet professionnel cohérent.

You must show an appetite for large scale simulations of material behaviour and a will to deeply understand the processes behind material deformation. You will be part of a national project regrouping 4 recognized institutes in the field; 3 different PhD student will interact within the project. The Ph. D. candidate is expected to communicate within the project, at relevant conferences and to publish in international journals. Mastering English writing and very good communication skills is mandatory.

Pour postuler :
Envoyer votre dossier à recrutement_these@mat.mines-paristech.fr comportant
• un curriculum vitae détaillé
• une copie de la carte d'identité ou passeport
• une lettre de motivation/projet personnel
• des relevés de notes L3, M1, M2
• 2 lettres de recommandation
• les noms et les coordonnées d'au moins deux personnes pouvant être contactées pour recommandation
• une attestation de niveau d'anglais

Engineer and / or Master of Science - Good level of general and scientific culture. Good level of knowledge of French (B2 level in french is required) and English. (B2 level in english is required) Excellent analytical, synthesis, innovation and communication skills. Qualities of adaptability and creativity. Teaching skills. Motivation for research activity. Coherent professional project.

You must show an appetite for large scale simulations of material behaviour and a will to deeply understand the processes behind material deformation. You will be part of a national project regrouping 4 recognized institutes in the field; 3 different PhD student will interact within the project. The Ph. D. candidate is expected to communicate within the project, at relevant conferences and to publish in international journals. Mastering English writing and very good communication skills is mandatory.

Applicants should supply the following :
• a detailed resume
• a copy of the identity card or passport
• a covering letter explaining the applicantÂ's motivation for the position
• detailed exam results
• two references : the name and contact details of at least two people who could be contacted
• to provide an appreciation of the candidate
• Your notes of M1, M2
• level of English equivalent TOEIC

to be sent to recrutement_these@mat.mines-paristech.fr

Résultat attendu

This work will provide a new avenue towards an improved and physically motivated description of crystal plasticity constitutive behaviour for polycrystalline materials.

Objectif

The Key obectives of this project are:
1. Pushing the frontier of experimental characterization of bulk plasticity
2. Determining the contribution of slip band/localization in plastic strain of individual grains
3. Identifying mechanisms governing the propagation of plastic strain in the polycrystal
4. Advancing image-based mesoscale modelling of crystal plasticity

Références

[1] W. Gerberich et al. Review Article: Case studies in future trends of computational and experimental nanomechanics, J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., vol. 35, no. 6, p. 60801, 2017.
[2] L. P. Kubin. Dislocations, mesoscale simulations and plastic flow. In: Oxford Series On Materials Modelling, vol. 5, A. P. Sutton and R. E. Rudd, Eds. Oxford University Press, 2013.
[3] U. F. Kocks and H. Mecking. Physics and phenomenology of strain hardening: the FCC case. Prog. Mater. Sci., vol. 48, pp. 171-273, 2003.
[4] B. Devincre and R. Gatti. Physically Justified Models for Crystal Plasticity Developed with Dislocation Dynamics Simulations. J. AerospaceLab, vol. 1, pp. 1-7, 2015.
[5] C. Déprés, C. F. Robertson, and M. C. Fivel. Low-strain fatigue in AISI 316L steel surface grains: a three-dimensional discrete dislocation dynamics modelling of the early cycles I. Dislocation microstructures and mechanical behaviour. Phil. Mag., vol. 84, no. 22, pp. 2257-2275, 2004.

Type financement

Financement par crédits ANR

Retour à la liste des propositions

actualité

Enquête 1<sup>er</sup> emploi 2020

Formation Enquête 1 er emploi 2020 Toujours 100 % de réponses. L'enquête 1 er emploi du cycle Ingénieurs civils de MINES…
> En savoir +

8th International DHC+ Student Awards

Formation 8th International DHC+ Student Awards La 8 e cérémonie de remise des prix a eu lieu le 18 juin.…
> En savoir +

Mon doctorat en confinement

Formation Mon doctorat en confinement             des Initiatives pour poursuivre sa thèse pendant le confinement,…
> En savoir +

Sauver les êtres humains ou la croissance économique, les États face au dilemme

Formation Sauver les êtres humains ou la croissance économique,… L’idée d’attribuer une valeur monétaire à une vie…
> En savoir +

European Research Council : un succès pour Pierre Rouchon

Formation European Research Council : un succès pour Pierre… Protéger cohérences et intrications  Ces futures…
> En savoir +

+ Toutes les actualités

contact

Régine MOLINS
Direction de l'Enseignement
Service du Doctorat
> envoyer un mail

Plan du site
MINES
ParisTech

60, Boulevard Saint-Michel
75272 PARIS Cedex 06
Tél. : +33 1 40 51 90 00

Implantations
Mentions légales | efil.fr | ©2012 MINES ParisTech | +33 1 40 51 90 00 |